
Applied Soft Computing 1 (2001) 127–138

A neuro-fuzzy approach for modelling
electricity demand in Victoria

Ajith Abraham∗, Baikunth Nath
School of Computing and Information Technology, Monash University, Gippsland Campus, 3842 Churchill, Australia

Received 13 February 2001; received in revised form 2 April 2001; accepted 12 June 2001

Abstract

Neuro-fuzzy systems have attracted growing interest of researchers in various scientific and engineering areas due to
the increasing need of intelligent systems. This paper evaluates the use of two popular soft computing techniques and
conventional statistical approach based on Box–Jenkins autoregressive integrated moving average (ARIMA) model to predict
electricity demand in the State of Victoria, Australia. The soft computing methods considered are an evolving fuzzy neural
network (EFuNN) and an artificial neural network (ANN) trained using scaled conjugate gradient algorithm (CGA) and
backpropagation (BP) algorithm. The forecast accuracy is compared with the forecasts used by Victorian Power Exchange
(VPX) and the actual energy demand. To evaluate, we considered load demand patterns for 10 consecutive months taken
every 30 min for training the different prediction models. Test results show that the neuro-fuzzy system performed better than
neural networks, ARIMA model and the VPX forecasts. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Neuro-fuzzy; Neural networks; Evolving fuzzy neural network; Scaled conjugate gradient algorithm; ARIMA model; Forecasting;
Electricity demand

1. Introduction and related research

Traditionally, the energy sector, and particularly the
electricity sector, has been dominated by monopoly
or near monopoly enterprises, typically either owned
or regulated by government. The nature of electricity
market is changing very rapidly with a widespread in-
ternational movement towards competitiveness. Some
countries, such as Norway, Chile, Japan, UK and the
United States have commonly been supplied electricity
by a large number of different regional Generators and
have developed a variety of mechanisms to allow some
form of trade between them. In 1994, Victoria started
the process of privatisation and restructuring electric-

∗ Corresponding author.
E-mail addresses: ajith.abraham@infotech.monash.edu.au
(A. Abraham), baikunth.nath@infotech.monash.edu.au (B. Nath).

ity industry to generate competition. The objective
was to promote a more flexible, cost-effective and ef-
ficient electricity industry with the aim of delivering
cheaper electricity to business and the general com-
munity. Following success of this operation, Australia
started the process of implementing a unified National
Electricity Market in December 1998 [13].

In Victoria, >80% of electricity comes from brown
coal fired stations. Since the on/off states for such
power generating stations have large time lags for
start-ups, stability in its operations is important. The
peak demand for electricity for the State at any time
instant is about 6700 MWh. This demand is highly
volatile on a day-to-day basis and is being significantly
affected by the Victorian weather conditions. Elec-
tricity is consumed as it is generated and is very often
sold in advance of production. Electricity as a com-
modity has very different characteristics compared

1568-4946/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S1568 -4946 (01 )00013 -8



128 A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138

to a physical commodity. It cannot be stored. There-
fore, to meet the electricity market demands a highly
reliable supply and delivery system is required. Ad-
ditionally, in order to gain a competitive advantage
in this market through the spot-market pricing an ac-
curate forecast of electricity demand at regular time
intervals is essential. Until 1996, Victorian Power
Exchange (VPX) the body responsible for the secure
operations of the power system, generated electricity
demand forecasts based on weather forecasts and his-
torical demand patterns [1,2]. Our research is focused
on developing more accurate and reliable forecasting
models that improves current forecasting methods.
This paper investigates two soft computing fore-
casting models and a popular statistical forecasting
technique based on Box–Jenkins ARIMA model [12]
for predicting 96 half-hourly (2 days ahead) demands
for electricity, and compares their performance with
forecasts used by VPX. The soft computing mod-
els considered are an evolving fuzzy neural network
(EFuNN) [8] and a feedforward artificial neural net-
work (ANN) trained using the scaled gradient conju-
gate algorithm and backpropagation (BP) algorithm.

For developing the forecasting models we used
the energy demand data for 10 months period from
27th January to 30th November 1995 in the State of
Victoria. We also made use of the associated data
stating the minimum and maximum temperature of
the day, time of day, season and the day of week. The
forecasting models were trained using three randomly
selected samples containing 20% of the data during
the period 27th January 1995 to 28 November 1995.
To ascertain the forecasting accuracy the developed
models were tested to predict the demand for the
period 29–30 November 1995.

The paper is organised as follows. In Section
2, we give a brief overview of EFuNN and ANN
and ARIMA model. Section 3 discusses the experi-
mentation set-up, characteristics of the data and the
forecasting performance of the proposed neuro fuzzy
system, ANN and ARIMA model. Conclusions are
drawn in Section 4.

2. Forecasting models

A wide variety of forecasting methods are available
to the management. The evolution of soft compu-

ting techniques has increased the understanding of
various aspects of the problem environment and,
consequently, the predictability of many events. Con-
nectionist models [11] make use of some of the pop-
ular soft computing techniques including methods of
neurocomputing [7], neuro-fuzzy computing [3], evo-
lutionary algorithms and several hybrid techniques. In
contrast with the conventional AI techniques, which
deal only with precision, certainty and rigor, connec-
tionist models are able to exploit the tolerance for
imprecision, uncertainty and are often very robust.

Perhaps no other statistical forecasting technique
has been more widely discussed than ARIMA model
building. An ARIMA model has three components:
autoregressive, integrated and moving average (MA).
Basic ARIMA model building consists of four steps:
(1) model identification, (2) parameter estimation, (3)
model diagnostics and (4) forecast verification and
reasonableness. We hope the following sections will
give some technical insights of the different prediction
models considered.

2.1. Artificial neural network (ANN)

ANN were designed to mimic the characteristics
of the biological neurons in the human brain and
nervous system [7]. An ANN creates a model of neu-
rons and the connections between them, and trains it
to associate output neurons with input neurons. The
network “learns” by adjusting the interconnections
(called weights) between layers. When the network
is adequately trained, it is able to generate relevant
output for a set of input data. A valuable property
of neural networks is that of generalisation, whereby
a trained neural network is able to provide a cor-
rect matching in the form of output data for a set of
previously unseen input data.

BP is one of the most famous training algorithms
for multilayer perceptrons [8]. Basically, BP is a gra-
dient descent technique to minimise the error E for
a particular training pattern. For adjusting the weight
(wk), in the batched mode variant the descent is based
on the gradient ∇E(δE/δwk) for the total training set:

�wk(n) = −ε
δE

δwk

+ α × �wk(n − 1) (1)

The gradient gives the direction of error E. The para-
meters ε and α are the learning rate and momentum,



A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138 129

respectively. A good choice of both the parameters is
required for training success and speed of the ANN.

In the conjugate gradient algorithm (CGA), a
search is performed along conjugate directions, which
produces generally faster convergence than steepest
descent directions [10]. A search is made along the
conjugate gradient direction to determine the step size,
which will minimise the performance function along
that line. A line search is performed to determine the
optimal distance to move along the current search di-
rection. Then the next search direction is determined
so that it is conjugate to previous search direction.
The general procedure for determining the new search
direction is to combine the new steepest descent direc-
tion with the previous search direction. An important
feature of the CGA is that the minimisation performed
in one step is not partially undone by the next, as it
is the case with gradient descent methods. An impor-
tant drawback of CGA is the requirement of a line
search, which is computationally expensive. Moller
[9] introduced the scaled conjugate gradient algorithm
(SCGA) as a way of avoiding the complicated line
search procedure of conventional CGA. According to
the SCGA, the Hessian matrix is approximated by

E′′(wk)pk = E′(wk + σkpk) − E′(wk)

σk
+ λkpk (2)

where E′ and E′′ are the first and second derivative
information of global error function E (wk). The other
terms pk , σk and λk represent the weights, search
direction, parameter controlling the change in weight
for second derivative approximation and parameter
for regulating the indefiniteness of the Hessian. In
order to get a good quadratic approximation of E,
a mechanism to raise and lower λk is needed when
the Hessian is positive definite. Detailed step-by-step
description can be found in [9].

2.2. Neuro-fuzzy network

We define a neuro-fuzzy system [3] as a combina-
tion of ANN and fuzzy inference system (FIS) [6] in
such a way that neural network learning algorithms are
used to determine the parameters of FIS [4]. An even
more important aspect is that the system should always
be interpretable in terms of fuzzy if-then rules, because
it is based on the fuzzy system reflecting vague knowl-
edge. We used EFuNN implementing a Mamdani [5]

type FIS and all nodes are created during learning.
EFuNN has a five-layer structure as shown in Fig. 1
[8].

Fig. 2 illustrates a Mamdani FIS combining two
fuzzy rules using the max–min method [5]. According
to the Mamdani FIS, the rule antecedents and conse-
quents are defined by fuzzy sets and has the following
structure:

if x isA1 and y isB1, then z1 = C1 (3)

where A1 and B1 are the fuzzy sets representing input
variables and C1 is the fuzzy set representing the out-
put fuzzy set. In EFuNN, the input layer is followed
by the second layer of nodes representing fuzzy quan-
tification of each input variable space. Each input
variable is represented here by a group of spatially
arranged neurons to represent a fuzzy quantisation of
this variable. Different membership functions (MF)
can be attached to these neurons (triangular, Gaus-
sian, etc.). The nodes representing MF can be modi-
fied during learning. New neurons can evolve in this
layer if, for a given input vector, the corresponding
variable value does not belong to any of the existing
MF to a degree greater than a membership thresh-
old. The third layer contains rule nodes that evolve
through hybrid supervised/unsupervised learning. The
rule nodes represent prototypes of input–output data
associations, graphically represented as an associa-
tion of hyper-spheres from the fuzzy input and fuzzy
output spaces. Each rule node, e.g. rj , represents an
association between a hyper-sphere from the fuzzy
input space and a hyper-sphere from the fuzzy output
space; W1(rj ) connection weights representing the
co-ordinates of the centre of the sphere in the fuzzy in-
put space, and W2(rj ) — the co-ordinates in the fuzzy
output space. The radius of an input hyper-sphere of
a rule node is defined as (1 − Sthr), where Sthr is the
sensitivity threshold parameter defining the minimum
activation of a rule node (e.g. r1, previously evolved
to represent a data point (Xd1,Yd1)) to an input vec-
tor (e.g. (Xd2,Yd2)) in order for the new input vector
to be associated with this rule node. Two pairs of
fuzzy input–output data vectors d1 = (Xd1, Yd1) and
d2 = (Xd2, Yd2) will be allocated to the first rule node
r1 if they fall into the r1 input sphere and in the r1
output sphere, i.e. the local normalised fuzzy differ-
ence between Xd1 and Xd2 is smaller than the radius r
and the local normalised fuzzy difference between Yd1



130 A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138

Fig. 1. Architecture of EFuNN.

Fig. 2. Mamdani fuzzy inference system.

Fig. 3. Typical weekly demand variations.



A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138 131

and Yd2 is smaller than an error threshold Errthr. The
local normalised fuzzy difference between two fuzzy
membership vectors d1f and d2f that represent the
membership degrees to which two real values d1 and
d2 data belong to the pre-defined MF, are calculated
as D(d1f , d2f) = sum(abs(d1f − d2f))/sum(d1f , d2f).

If data example d1 = (Xd1, Yd1), where Xd1 and
Xd2 are correspondingly the input and the output
fuzzy membership degree vectors, and the data exam-
ple is associated with a rule node r1 with a centre r1

1 ,
then a new data point d2 = (Xd2, Yd2), will also be
associated with this rule node through the process of
associating (learning) new data points to a rule node.
The centres of this node hyper-spheres adjust in the
fuzzy input space depending on a learning rate lr1,
and in the fuzzy output space depending on a learn-
ing rate lr2, on the two data point’s d1 and d2. The
adjustment of the centre r1

1 to its new position r2
1 can

be represented mathematically by the change in the
connection weights of the rule node r1 from W1(r

1
1 )

and W2(r
1
1 ) to W1(r

2
1 ) and W2(r

2
1 ) according to the

following vector operations:

W2(r
2
1 )=W2(r

1
1 ) + lr2 × Err(Yd1, Yd2) × A1(r

1
1 ) (4)

W1(r
2
1 ) = W1(r

1
1 ) + lr1 × Ds(Xd1, Xd2) (5)

where Err(Yd1, Yd2) = Ds(Yd1, Yd2) = Yd1 − Yd2 is
the signed value rather than the absolute value of the
fuzzy difference vector; A1(r

1
1 ) is the activation of the

rule node r1
1 for the input vector Xd2.

While the connection weights from W1 and W2 cap-
ture spatial characteristics of the learned data (centres
of hyper-spheres), the temporal layer of connection
weights W3 captures temporal dependencies between
consecutive data examples. If the winning rule node
at the moment (t − 1) (to which the input data vec-
tor at the moment (t − 1) was associated) was r1 =
inda1(t − 1), and the winning node at the moment t
is r2 = inda1(t), then a link between the two nodes is
established as follows:

W3(r1, r2)
(t) =W3(r1, r2)

(t−1) + lr3

×A1(r1)
(t−1)A1(r2)

(t), (6)

where A1(r)(t) denotes the activation of a rule node r
at a time moment (t); lr3 defines the degree to which
the EFuNN associates links between rules (clusters,
prototypes) that include consecutive data examples

(if lr3 = 0, no temporal associations are learned in an
EFuNN structure).

The learned temporal associations can be used to
support the activation of rule nodes based on tempo-
ral, pattern similarity. Here, temporal dependencies
are learned through establishing structural links. The
ratio spatial-similarity/temporal-correlation can be
balanced for different applications through two pa-
rameters Ss and Tc such that the activation of a rule
node r for a new data example dnew is defined as the
following vector operations:

A1(r) = f (Ss × D(r, dnew) + Tc × W3(r
(t−1), r))

(7)

where f is the activation function of the rule node
r, D(r, dnew) the normalised fuzzy distance value
and r(t−1) the winning neuron at the previous time
moment.

The fourth layer of neurons represents fuzzy
quantification for the output variables. The fifth layer
represents the real values for the output variables.

EFuNN evolving algorithm is given as a procedure
of consecutive steps [8]:

1. Initialise an EFuNN structure with a maximum
number of neurons and zero value connections.
If initially there are no rule nodes connected to
the fuzzy input and fuzzy output neurons, then
create the first node rj = 1 to represent the first
data example EX = (Xd1, Yd1) and set its input
W1(rj ) and output W2(rj ) connection weights as
follows:

〈Create a new rule node rj 〉 to represent a data
sample EX:
W1(rj ) = EX: W2(rj ) = TE, where TE is the
fuzzy output vector for the (fuzzy) example EX.

2. While 〈there are data examples〉 Do.
Enter the current, example (Xdi , Ydi), EX be-

ing the fuzzy input vector (the vector of the
degrees to which the input values belong to the
input MF). If there are new variables that appear
in this example and have not been used in pre-
vious examples, create new input and/or output
nodes with their corresponding MF.

3. Find the normalised fuzzy similarity between
the new example EX (fuzzy input vector) and
the already stored patterns in the case nodes
rj = r1, r2, . . . , rn.



132 A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138

D(EX, rj )= sum(abs(EX − W1(rj )))/

sum(W1(rj ) + EX).

4. Find the activation A1(rj ) of the rule nodes
rj = r1, r2, . . . , rn. Here, radial basis activation
(radbas) function, or a saturated linear (satlin)
one, can be used, i.e.

A1(rj ) = radbas(SsD(EX, rj − TcW3), or

A1(rj ) = satlin(1 − SsD(EX, rj + TcW3)).

5. Update the pruning parameter values for the rule
nodes, e.g. age, average activation as pre-defined.

6. Find m case nodes rj with an activation value
A1(rj ) above a predefined sensitivity threshold
Sthr.

7. From the m case nodes, find one rule node inda1
that has the maximum activation value maxa1.

8. If maxa1 < Sthr, then, 〈create a new rule node〉
using the procedure from step 1.

Else
9. Propagate the activation of the chosen set of

m rule nodes (rj1, . . . , rjm) to the fuzzy output
neurons: A2 = satlin(A1(rj1, . . . , rjm)W2.

10. Calculate the fuzzy output error vector:

Err = A2 − TE.

11. If (D(A2, TE) > Errthr) 〈create a new rule node〉
using the procedure from step 1.

12. Update (a) the input, and (b) the output of the
m− 1 rule nodes k = 2: jm in case of a new node
was created, or m rule nodes k = j1: jm, in case
of no new rule was created:

• Ds(EX − W1(rk)) = EX − W1(rk);
W1(rk) = W1(rk) + lr1 × Ds(EX − W1(rk)),

where lr1 is the learning rate for the first layer;
• A2(rk) = satlin(W2(rk) × A1(rk)),

Err(rk) = TE − A2(rk);
• W2(rk) = W2(rk) + lr2 × Err(rk) × A1(rk),

where lr2 is the learning rate for the second
layer.

13. Prune rule nodes rj and their connections that
satisfy the following fuzzy pruning rule to a
pre-defined level representing the current need of
pruning:

If (a rule node rj is OLD) and (average acti-
vation A1av(rj ) is LOW) and (the density of the

neighbouring area of neurons is HIGH or MOD-
ERATE) (i.e. there are other prototypical nodes
that overlap with j in the input–output space; this
condition apply only for some strategies of insert-
ing rule nodes as explained below). Then the prob-
ability of pruning node (rj ) is HIGH. The above
pruning rule is fuzzy and it requires that the fuzzy
concepts as OLD, HIGH, etc. are predefined.

14. Aggregate rule nodes, if necessary, into a smaller
number of nodes. A C-means clustering algori-
thm can be used for this purpose.

15. End of the while loop and the algorithm.

The rules that represent the rule nodes need to be
aggregated in clusters of rules. The degree of aggre-
gation can vary depending on the level of granularity
needed. At any time (phase) of the evolving (learn-
ing) process, fuzzy, or exact rules can be inserted and
extracted [15]. Insertion of fuzzy rules is achieved
through setting a new rule node for each new rule,
such as the connection weights W1 and W2 of the rule
node represent the fuzzy or the exact rule. The process
of rule extraction can be performed as aggregation of
several rule nodes into larger hyper-spheres. For the
aggregation of two-rule nodes r1 and r2, the following
aggregation rule is used:

If (D(W1(r1),W1(r2)) ≤ Thr1) and

(D(W2(r1),W2(r2)) ≤ Thr2)

then aggregate r1 and r2 into ragg and calculate the
centres of the new rule node as:

W1(ragg) = average (W1(r1),W1(r2)),

W2(ragg) = average (W2(r1),W2(r2)).

Here, the geometrical centre between two points in
a fuzzy problem space is calculated with the use of
an average vector operation over the two fuzzy vec-
tors. This is based on a presumed piece-wise linear
function between two points from the defined through
the parameters Sthr and Errthr input and output fuzzy
hyper-spheres.

2.3. Autoregressive integrated moving average
(ARIMA) model

Given data on half hourly temperatures forecasts,
a number of qualitative predictor variables, and
half-hourly sequentially recorded response values



A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138 133

of electricity demand, it seems a suitable statistical
prediction model would be a time series multiple
regression model. However, there was no apparent
trend over time and the response variable exhibited
strong autocorrelation with lag one. Besides, in Vic-
toria, the extreme weather conditions in summer and
winter months are very unpredictable. These changes
occur with a very short notice, lasts a short duration,
and show little regularity from year to year. These
considerations and the fact that a time efficient model
was desired led to the exploration of other time series
statistical models.

Application of general class of statistical forecasting
methods involves two basic tasks: analysis of the data
series and selection of the forecasting model. A simple
regression model can be represented as

Y = b0 + b1X1 + b2X2 + · · · + bpXp + e (8)

where Y is the forecast variable, X1–Xp the explanatory
variables, b0–bp the linear regression coefficients, and
e the error term. If we can represent the explanatory
variables as X1 = Yt−1, X2 = Yt−2,. . . , Xp = Yt−p;
(8) then becomes

Yt = b0 + b1Yt−1 + b2Yt−2 + · · · + bpYt−p + et (9)

The name autoregression (AR) is used to describe the
above equation due to the time-lagged values of the
explanatory variable. Just as it is possible to regress
against past values of the series, there is a time series
model, which uses past errors as explanatory variables:

Yt = b0 + b1et−1+b2et−2+ · · · + bpet−p + et (10)

Here, explicitly, a dependence relationship is set-up
among the successive error terms, and the equation is
called a MA model. The AR models can be effectively
coupled with MA models to form a general and use-
ful class of time series models called autoregressive
moving average (ARMA) models especially for sta-
tionary data. This class of models can be extended to
non-stationary series by allowing differencing of the
data series. These are called autoregressive integrated
moving average (ARIMA) models [12]. ARIMA
model building can be summarised in four steps:

• Model identification: Using graphs, statistics, auto-
correlation function, partial autocorrelation func-
tions, transformations, etc. achieve stationary and
tentatively identify patterns and model components.

• Parameter estimation: Determine the model
coefficients through the method of least squares,
maximum likelihood methods and other techniques.

• Model diagnostics: Determine if the model is valid.
If valid, then use the model; otherwise repeat iden-
tification, estimation, and diagnostic steps.

• Forecast verification and reasonableness: Having
estimated an ARIMA model, it is necessary to
revisit the question of identification to see if the
selected model can be improved. Several statistical
techniques and confidence intervals determine the
validity of forecasts and track model performance
to detect out of control situations.

There are such a bewildering variety of ARIMA
models; it can be difficult to decide which model
is most appropriate for a given set of data. Having
made tentative model identification, the AR and MA
parameters, seasonal and non-seasonal, have to be
determined in the best possible manner. Even if the
selected model appear to be best among those mod-
els considered, it is also necessary to do diagnostic
checking to check that the model is adequate.

3. Experimentation set-up — training and
performance evaluation

The data for our study were the recorded half-hourly
actual electricity demand for the 10 months period
from January to November 1995 in the State of Victo-
ria. Fig. 3 shows a typical weekly cycle of electricity
demand. Fluctuations in daily demand are prevalent
with peaks occurring around midday. Extreme weather
conditions in winter and summer months accentuate
peaks in electricity demand due to the widespread use
of electricity for heating and cooling. Other times,
electricity demand is dominated primarily by ambient
temperature, time of day, working or non-working day
and the day of week.

The experimental system consists of two stages:
modelling the prediction systems (training in the case
of soft computing models) and performance evalu-
ation. For network training, the six selected input
descriptor variables were: the minimum and maxi-
mum recorded temperatures, previous day’s demand,
a value expressing the 0.5 h period of the day, season,
and the day of week. To evaluate the learning capability



134 A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138

of the soft computing models, the network was trained
only on 20% of the randomly selected data. We cre-
ated three different samples of training data to study
the effect of random sampling and periodicity. Each

Fig. 4. (a) Training results for EFuNN; (b) learned rule nodes during EFuNN training; (c) comparison of ANN training using SCGA and BP.

training sample consisted of 2937 data sets represent-
ing 20% random data.

Our objective is to develop an efficient forecasting
model capable of producing a short-term forecast of



A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138 135

Fig. 4 (Continued ).

Fig. 5. Test results and performance comparison of demand forecasts (2 days).



136 A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138

Table 1
Test results and performance comparison of demand forecasting

EFuNN ANN (BP) ANN (SCGA) ARIMA

Learning epochs 1 2500 2500 –
Training error (RMSE) 0.0013 0.116 0.0304 –
Testing error (RMSE) 0.0092 0.118 0.0323 0.0423
Computational load (in billion flops) 0.536 87.2 175.0 –

demand for electricity. The required time-resolution of
the forecast is half-hourly, and the required time-span
of the forecast is 2 days. This means that the system
should be able to produce a forecast of electricity
demand for the next 96 time periods. The training
was replicated three times using three different sam-
ples of training data and different combinations of
network parameters. We used a Pentium II, 450 MHz
platform for simulating the prediction models using
MATLAB.

3.1. EFuNN training

We used four Gaussian MF for each input variable
and the following evolving parameters: sensitivity
threshold Sthr = 0.99, error threshold Errthr = 0.001
and learning rates for first and second layer = 0.05.
EFuNN uses a one pass training approach. The net-
work parameters were determined using a trial and
error approach. The training was repeated three times
after reinitialising the network and the worst errors
were reported. Online learning in EFuNN resulted
in creating 2122 rule nodes as depicted in Fig. 4(b).
Fig. 4(a) illustrates the EFuNN training results and
the training performance is summarised in Table 1.

3.2. ANN training

While EFuNN is capable of adapting the architec-
ture according to the problem, we had to perform some
initial experiments to decide the architecture, activa-
tion functions and learning parameters of the ANN.
Our preliminary experiments helped us to formulate a
feedforward neural network with one input layer, two
hidden layers and an output layer [6-40-40-1]. Input
layer consists of six neurons corresponding to the in-
put variables. The first and second hidden layers con-
sist of 40 neurons, respectively, using tanh-sigmoidal

activation functions. To illustrate the convergence fea-
ture of SCGA we also trained a neural network (with
same architecture) using BP algorithm. To evaluate
ANN learning performance, training was terminated
after 2500 epochs. Training errors (RMSE) achieved
after 2500 epochs for SCGA and BP are 0.0304 and
0.116, respectively. Fig. 4(c) shows the convergence
of SCGA with respect to BP algorithm.

3.3. ARIMA model

It is observed that the electricity demand is greatly
influenced by the day of the week, and the time of
the day. In addition, each 0.5 h demand seems to de-
pend on the previous period’s demand. These three
important features of the data are modelled applying
Box–Jenkins ARIMA(1 1 1)(1 0 1)48 model to data se-
ries obtained by differencing actual demand for a lag
of 336 time periods.

3.4. Test results

Table 1 summarises the comparative performance of
EFuNN, ANN and ARIMA model. Fig. 5 depicts the
test results for prediction models considered. To have a
performance evaluation the actual energy demand and
the forecasts used by VHP are also plotted in Fig. 5.

4. Discussion, conclusions and future research

In this paper, we attempted to model and forecast
electricity demand based on two popular soft com-
puting techniques and ARIMA model. Experimenta-
tion results reveal that EFuNN performed better than
other techniques in terms of low RMSE error and
less computational load (less performance time). All
the considered methods performed significantly better



A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138 137

than the forecasts used by VPX. CGA normally con-
verge faster than the steepest descent. As depicted in
Fig. 4(c) our experimentation results reveal that ANN
trained by SCGA converged much faster than BP al-
gorithm. Alternatively, BP training needs more epochs
(longer training time) to achieve better performance.
The soft computing models considered on the other
hand are easy to implement and produces desirable
mapping function by training on the given data set.
All the soft computing models require information
only about the input variables for generating forecasts
thereby reducing the tedious analysis and trail and er-
ror methods as in the case of ARIMA model.

EFuNN makes use of the linguistic knowledge of
FIS and the learning capability of neural networks.
Hence, the neuro-fuzzy system is able to precisely
model the uncertainty and imprecision within the
data as well as to incorporate the learning ability of
neural networks. Even though the performance of
neuro-fuzzy systems is dependent on the problem
domain, very often the results are better while com-
pared to pure neural network approach [3,11]. Com-
pared to neural networks, an important advantage of
neuro-fuzzy systems is its reasoning ability (if-then
rules) of any particular state. A fully trained EFuNN
could be replaced by a set of if-then rules [15]. A
simple example of a learned EFuNN learned rule is
illustrated below.

“If the maximum temperature of the day is HIGH
and minimum temperature of the day is LOW and
previous days demand is MEDIUM and it is summer
(HIGH) and 9.00 a.m. (HIGH) and a Monday (HIGH)
then the electricity demand is MEDIUM.”

EFuNN uses a hybrid learning technique (a mixture
of unsupervised and supervised learning) to fine-tune
the parameters of the FIS. As EFuNN adopts a sin-
gle pass training (1 epoch) it is more adaptable and
easy for further on-line training which might be highly
useful for on-line forecasting and bidding. Another
important feature of EFuNN is that the user has the
flexibility to construct the network (by selecting the
parameters). Hence, for applications where speed is
more important than the accuracy a faster network
can be selected. However, an important disadvantage
of EFuNN is the determination of the network pa-
rameters like number and type of MF for each input
variable, sensitivity threshold, error threshold and the
learning rates. Even though a trial and error approach

is practical, when the problem becomes complicated
(large number of input variables) determining the op-
timal parameters will be a tedious task.

It is interesting to note the RMSE of ARIMA model
on the test set which is approximately 180% lesser
than the neural network trained using BP algorithm
(2500 epochs training). The ANN performance (using
BP) could have been improved if we had increased the
number of epochs. Our experiments on three separate
data samples reveal that the results are not dependent
on the data sample. We used only 20% of the total
data to evaluate the learning capability of the soft
computing models. Network performance could have
been further improved by providing more training
data. Another interesting fact about the considered
soft computing models are their robustness and capa-
bility to handle noisy and approximate data that are
typical in power systems, and therefore, should be
more reliable in worst situations.

The important drawback with the conventional
design of ANN is that the designer has to specify
the number of neurons, their distribution over several
layers, interconnection between them, initial weights,
type of learning algorithm and parameters. In this
paper, we have considered a forecasting time resolu-
tion of 30 min. Considering the rapid fluctuation of
demand and for a more effective energy management,
one might have to consider even a low resolution
forecasting (e.g. 5 min). Our future works include us-
ing the adaptive learning by evolutionary computation
(ALEC) framework [14] for optimising the neural
networks used to build forecasting models. Similar
procedures might be used to automatically adapt
the optimal combination of network parameters for
the EFuNN.

References

[1] The Victorian ESI Reforming the Victorian Electricity Supply
Industry, Industry Review, 1995.

[2] B. Nath, M. Nath, Using neural networks and statistical
methods for forecasting electricity demand in Victoria,
(special issue on Mathematics for Industry), Int. J. Manage.
Syst. (IJOMAS) 16 (1) (2000) 105–112.

[3] A. Abraham, B. Nath, Designing optimal neuro-fuzzy systems
for intelligent control, in: J.L. Wang (Ed.), Proceedings of
the Sixth International Conference on Control, Automation,
Robotics and Vision, (ICARCV 2000), (CD ROM Proceeding,
Paper Reference 429 — FP7.3 (I), December 2000.



138 A. Abraham, B. Nath / Applied Soft Computing 1 (2001) 127–138

[4] D. Nauk, F. Klawonn, R. Kruse, Foundations of Neuro-Fuzzy
Systems, Willey, New York, 1997.

[5] E.H. Mamdani, S. Assilian, An experiment in linguistic
synthesis with a fuzzy logic controller, Int. J. Man-Machine
Stud. 7 (1) (1975) 1–13.

[6] V. Cherkassky, in: O. Kayak, L.A. Zadeh, et al. (Eds.),
Fuzzy Inference Systems: A Critical Review, Computational
Intelligence: Soft Computing and Fuzzy-Neuro Integra-
tion with Applications, Springer, Berlin, 1998, pp. 177–197.

[7] J.M. Zurada, Introduction to Artificial Neural Systems, PWS
Pub Co, 1992.

[8] N. Kasabov, Evolving fuzzy neural networks: algorithms,
applications and biological motivation, in: T. Yamakawa,
G. Matsumoto (Eds.), Methodologies for the Conception,
Design and Application of Soft Computing, World Scientific,
Singapore, 1998, pp. 271–274.

[9] A.F. Moller, A scaled conjugate gradient algorithm for fast
supervised learning, Neural Networks 6 (1993) 525–533.

[10] M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network
Design, PWS Publishing, Boston, MA, 1996.

[11] A. Abraham, B. Nath, Connectionist models for intelligent
reactive power control, in: Proceedings of the Australasian
MATLAB Users Conference, Melbourne, (http://www.
ceanet.com.au/mluserconf/papers.asp), November 2000.

[12] G.E.P. Box, G.M. Jenkins, G.C. Reinsell, Time Series
Analysis: Forecasting and Control, 3rd Edition, Prentice-Hall,
Englewood, 1994.

[13] National Electricity Market Management Company Ltd.:
http://www.nemmco.com.au/.

[14] A. Abraham, B. Nath, ALEC: An adaptive framework
for optimisation of artificial neural networks, in: Vassil N
Alexandrov, et al. (Eds.) Proceedings of the International
Conference on Computational Sciences, ICCS, May 2001,
Lecture Notes in Computer Science (LNCS 2074), Springer,
Berlin, pp. 171–180.

[15] N. Kasabov, B. Woodford, Rule insertion and rule extraction
from evolving fuzzy neural networks: algorithms and appli-
cations for building adaptive, intelligent expert systems, in:
Proceedings of the FUZZ-IEEE’99 International Conference
on Fuzzy Systems, Seoul, Korea, 1999, pp. 1406–1411.


